Measurements and simulations of the near-surface composition of evaporating ethanol-water droplets.

نویسندگان

  • Christopher J Homer
  • Xingmao Jiang
  • Timothy L Ward
  • C Jeffrey Brinker
  • Jonathan P Reid
چکیده

The evolving composition of evaporating ethanol-water droplets (initially 32.6 or 45.3 microm radius) is probed by stimulated Raman scattering over the period 0.2 to 3 ms following droplet generation and with a surrounding nitrogen gas pressure in the range 10 to 100 kPa. The dependence of the evaporation rate on the relative humidity of the surrounding gas phase is also reported. The measured data are compared with both a quasi-steady state model and with numerical simulations of the evaporation process. Results from the numerical simulations are shown to agree closely with the measurements when the stimulated signal is assumed to arise from an outer shell with a probe depth of 2.9+/-0.4% of the droplet radius, consistent with a previous determination. Further, the time-dependent measurements are shown to be sensitive to the development of concentration gradients within evaporating droplets. This represents the first direct measurement of the spatial gradients in composition that arise during the evaporation of aerosol droplets and allows the influence of liquid phase diffusion within the condensed phase on droplet evaporation to be examined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

This paper is published as part of a PCCP Themed Issue on: Physical Chemistry of Aerosols

Measurements and simulations of the near-surface composition of evaporating ethanol–water droplets Christopher J. Homer, Xingmao Jiang, Timothy L. Ward, C. Jeffrey Brinker and Jonathan P. Reid, Phys. Chem. Chem. Phys., 2009, DOI: 10.1039/b904070f Effects of dicarboxylic acid coating on the optical properties of soot Huaxin Xue, Alexei F. Khalizov, Lin Wang, Jun Zheng and Renyi Zhang, Phys. Chem...

متن کامل

Precise, contactless measurements of the surface tension of picolitre aerosol droplets.

The surface composition and surface tension of aqueous droplets can influence key aerosol characteristics and processes including the critical supersaturation required for activation to form cloud droplets in the atmosphere. Despite its fundamental importance, surface tension measurements on droplets represent a considerable challenge owing to their small volumes. In this work, we utilize holog...

متن کامل

Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.

The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with suppo...

متن کامل

Evaporation of Ethanol-Water Binary Mixture Sessile Liquid Marbles.

Liquid marble is a liquid droplet coated with particles. Recently, the evaporation process of a sessile liquid marble using geometric measurements has attracted great attention from the research community. However, the lack of gravimetric measurement limits further insights into the physical changes of a liquid marble during the evaporation process. Moreover, the evaporation process of a marble...

متن کامل

Thermodynamics of the solubility of potassium nitrate in the mixed solvent, Ethanol+Water, and the related Ion-association

Using the evaporating method, the solubility of potassium Nitrate was determined in various mixtures containing Water and Ethanol at 25°C. The results show that the solubility of KNo3 decreases with increasing the mass percent of Ethanol in the mixtures. This trend is along with decreasing the dielectric constant of Water+Ethanol mixtures. Moreover, it can be concluded that the totqal solubilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 11 36  شماره 

صفحات  -

تاریخ انتشار 2009